Parameter estimation and asymptotic stability in stochastic filtering

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter estimation and asymptotic stability in stochastic filtering

In this paper, we study the problem of estimating a Markov chain X(signal) from its noisy partial information Y , when the transition probability kernel depends on some unknown parameters. Our goal is to compute the conditional distribution process P{Xn|Yn, . . . , Y1}, referred to hereafter as the optimal filter. Following a standard Bayesian technique, we treat the parameters as a nondynamic ...

متن کامل

Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering

The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ : dXt θα t β t Xt dt σ t dWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Fina...

متن کامل

Parameter Estimation in Stochastic

Recent years have seen increasing popularity of stochastic chemical kinetic models due to their ability to explain and model several critical biological phenomena. Several developments in high resolution fluorescence microscopy have enabled researchers to obtain protein and mRNA data on the single cell level. The availability of these data along with the knowledge that the system is governed by...

متن کامل

Recursive Parameter Estimation: Asymptotic expansion

This paper is concerned with the asymptotic behaviour of estimation procedures which are recursive in the sense that each successive estimator is obtained from the previous one by a simple adjustment. The results of the paper can be used to determine the form of the recursive procedure which is expected to have the same asymptotic properties as the corresponding nonrecursive one defined as a so...

متن کامل

Joint State and Parameter Estimation in Particle Filtering and Stochastic Optimization

Dynamic state-space models are useful for describing data in many different areas, such as engineering, finance mathematics, environmental data, and physical science. An important task when analyzing data by state-space models is estimation of the underlying state process based on measurements from the observation process. Bayesian filtering represents a solution of considerable importance for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 2006

ISSN: 0304-4149

DOI: 10.1016/j.spa.2006.01.002